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Abstract. We discuss the macroscopic behavior of smectic CG liquid crystals. Smectic CG is the most
general tilted smectic phase that is fluid in the layers. It is characterized by global C1 symmetry. Conse-
quently, it is ferroelectric, pyroelectric and piezoelectric, opening up a number of possible applications for
such a phase. As smectic CG-phase has a macroscopic hand due to its structure, it is a natural candidate
to explain the recent experimental observations of left and right-handed helices in a system composed
of achiral molecules. We also discuss critically to what extent smectic CG could be important for liquid
crystalline phases formed by banana-shaped molecules. Phase transitions involving a smectic CG phase
and defects of its in-plane director are briefly discussed.

PACS. 61.30.-v Liquid crystals – 64.70.Md Transitions in liquid crystals – 77.84.Nh Liquids, emulsions,
and suspensions; liquid crystals

1 Introduction

The question of the type of electric properties, e.g. ferro-
and antiferroelectricity, possible in liquid crystalline mate-
rials composed of achiral molecules has recently attracted
increasing attention [1–7]. These developments can be
traced back, at least in part, to the prediction that suit-
ably bent achiral molecules arranged on smectic layers on
average parallel to their bend direction could form a fluid
biaxial smectic phase with a macroscopic polarization in
the smectic layer planes: CP [1,2]. This phase has C2v

symmetry, i.e. a twofold symmetry axis and a vertical mir-
ror plane perpendicular to the smectic layers and including
the twofold axis.

Over the last two years many compounds composed of
achiral bent or banana-shaped molecules have been syn-
thesized and investigations of their physical properties be-
gun [3–10]. Among these numerous studies, we highlight
two.

By measuring the hysteresis loop and investigating the
temperature dependence of the pyroelectric coefficient,
Soto Bustamente et al. [3,4] showed that antiferroelec-
tricity is possible in mixtures of achiral side chain liquid
crystalline polymers. Quite recently, Sekine et al. [6] de-
scribed the observation of an equal number of left and
right-handed helices in a liquid crystalline phase composed
of achiral banana-shaped molecules.

These recent experimental results give rise to a number
of important questions. Which biaxial fluid smectic phases

(for compounds composed of achiral molecules) can give
rise to antiferroelectric, ferrielectric and ferroelectric be-
havior? How can one obtain left and right-handed helices
in fluid smectic phases when the constituents are achiral?
How does the smectic CM phase, which is a fluid biaxial
orthogonal smectic phase [11], fit into this picture? The
smectic CM phase was first observed in side-on side chain
liquid crystalline polymers [12,13]. Its physical properties
including its defects [1], its macroscopic and electric be-
havior [14] as well as phase transitions involving smectic
CM have been addressed [15,16].

In the present paper we focus on the smectic CG phase
[11], where the subscript G stands for general. Smectic CG
is a biaxial smectic phase that is fluid in the layers and
for which none of the principle axes of the second rank
tensor characterizing the orientational order includes an
angle of 0 or 90◦ with the planes of the smectic layers.
We argue that the smectic CG phase is ferroelectric in
the bulk and that the structure of this liquid crystalline
phase is chiral (in the physical sense) [17], even though its
constituents are achiral (in the chemical sense). Thus, this
phase comes in a left-handed and a right-handed version.
This fact provides a natural explanation for the the equal
number of left and right-handed helices recently observed
[6]. In particular, we discuss the macroscopic properties of
smectic CG as well as its defect structures. We also sketch
properties of some phase transitions involving the smectic
CG phase. Finally, we suggest ways to distinguish between
smectic CG and smectic C, as well as smectic CM and CP .
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Fig. 1. Plot of the classes of fluid biaxial phases that are ferro-
electric: the untilted phase CP , the phases tilted with respect
to one direction, CB2 and CB1, and the doubly tilted phase CG.
Note that smectic CB2 and CG have a macroscopic hand; for
symmetries and other physical properties see text and Table 1.

2 General symmetry considerations

In the smectic C phase, the direction of long range orien-
tational order, n̂, is tilted with respect to the layer normal,
k̂. In smectic C, then, the director, n̂, is not parallel to
the layer normal k̂ as it is in the smectic A phase [11]
which has D∞h symmetry for achiral compounds. Thus,
smectic C is a phase with global C2h symmetry [11]: it
has a twofold axis parallel to the smectic layers and a hor-
izontal mirror plane perpendicular to the smectic layers
and the twofold axis. In smectic C, the in-plane director
ĉ, which is the projection of the director n̂ onto the smec-
tic planes, is not equivalent to −ĉ. As smectic CM [11] is
not tilted, its global symmetry is higher (D2h). Neverthe-
less, it is biaxial and fluid in the layers and thus a genuine
smectic phase. The in-plane director in smectic CM , m̂,
is indistinguishable from −m̂ [1,14,15], a feature that has
important consequences for its macroscopic properties and
defect structures.

In reference [1], we suggested the existence of a truly
ferroelectric biaxial fluid smectic phase, CP , with C2v

symmetry for which there is no horizontal mirror plane
but a preferred direction in the layer planes i.e. m̂, is dis-
tinguishable from −m̂ (Fig. 1, first row).

Thus a macroscopic polarization along this preferred
direction is possible leading to a phase that is either fer-
roelectric or ferrielectric (in the latter case there are two
sublayers whose macroscopic polarization is partially com-
pensated) in the bulk. In addition, there is also the possi-
bility that the macroscopic polarizations of the two sublay-
ers is exactly compensated. This case has been discussed
in detail by Soto Bustamente et al. [3,4]: there is no net
macroscopic polarization resulting in a truly antiferroelec-
tric structure.

One might want to call this truly antiferroelectric
phase smectic CA, where the subscript A stands for an-

tiferroelectric. However, this designation has been pre-
viously used for the “anti-helielectric” phase in com-
pounds composed of chiral molecules [18]. The term
anti-helielectric introduced here complements the term
helielectric introduced in reference [19]. While in the he-
lielectric C∗ phase the polarization is rotating in a spiral
fashion perpendicular to the helix axis giving rise to net
polarization zero when averaged over many pitch lengths,
the case of anti-helielectricity is even more intricate. When
going from one layer to the next the macroscopic polariza-
tion changes by about π. Thus one has two interpenetrat-
ing helices in this case, which both have the same pitch,
but again the net polarization is zero when averaged over
a sufficiently thick sample. We suggest this phase, which is
truly antiferroelectric [3,4], be called smectic CPA. In this
way, we indicate: (a) it is a fluid biaxial smectic phase
in compounds composed of achiral molecules; (b) it has
a macroscopic polarization in each of its two sublayers;
and (c) the macroscopic polarizations of its two sublayers
exactly compensate.

Tilting of banana shaped molecules can be done in two
different ways. First the preferred direction m̂ stays un-
tilted and n̂ and l̂ (cf. Fig. 1, second row) become tilted.
This results in a phase with C2 symmetry, where m̂ is the
twofold rotation axis, while the vertical mirror plane is
absent due to the tilt. A macroscopic polarization is only
possible along the symmetry axis. This ferroelectric phase
composed of molecules without chirality has a macroscopic
hand due to its structure. If the layers are stacked with
alternating polarizations, an antiferroelectric structure is
obtained. A different phase is found, if the preferred di-
rection m̂ (and n̂) is tilted, but l̂ remains in the smectic
layers (cf. Fig. 1, third row). Then the twofold rotation
axis is gone, but the mirror plane (identical to the tilt
plane) is still there. This gives a C1h symmetric phase,
where the polarization is restricted to lie in the tilt plane.
Thus this phase is ferroelectric with polarization compo-
nents in the smectic layers as well as perpendicular, and
it is achiral. If layers are stacked with opposite m̂ but the
same tilt direction, again an antiferroelectric phase ap-
pears (with an in-layer and out-of-layer component of the
staggered polarization). If layers with opposite tilt direc-
tion, but the same m̂ are stacked, this phase is antiferro-
electric perpendicular, but ferroelectric within, the layers,
while stacking layers with opposite tilt and opposite m̂
gives ferroelectricity perpendicular, and antiferroelectric-
ity within, the layers. Since these phases are expected to
arise predominantly for compounds composed of banana-
shaped molecules, they could be called CB2 and CB1, re-
spectively.

So far, we have focused on biaxial fluid smectic phases
where at least one of the principle axes of the bananas
lies within the smectic layers. If we drop this restriction,
the smectic CG phase [11] results (Fig. 1, fourth row). In
smectic CG all three principle axes include an angle with
the smectic layers different from 0 and 90◦ (double tilted
structure). As a result, smectic CG has, in general, global
C1 symmetry, the lowest possible symmetry: triclinic [20].
C1 symmetry means that this phase has no symmetry
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Fig. 2. Sketch of the right-handed (α, β) and left-handed (γ, δ)
versions of smectic CG. Note that the existence of a macro-
scopic handedness of the CG phase follows quite similarly as
the microscopic handedness for an asymmetric carbon atom
on a molecular scale.

at all and that therefore a macroscopic polarization ex-
ists that can point in any direction i.e. is not determined
by any symmetry element. The low symmetry, (C1), of the
CG phase has a large number of important consequences
[20] for the macroscopic properties of smectic CG that we
discuss in detail in the next section. In particular, any
smectic CG phase should be ferroelectric in the bulk.

We stress that we use the term “ferroelectric” for all
phases that show a non-vanishing spontaneous polariza-
tion in the bulk. This implies automatically such phases
to be pyroelectric and piezoelectric as well (for piezoelec-
tricity this statement cannot be inverted). We do not make
a distinction between pyroelectric and ferroelectric phases
based on hysteretic switchability (of the latter) – as is done
sometimes. Since “switchability” is neither a feature based
on symmetry arguments nor a property of the phase itself
(e.g. a surface stabilized smectic C∗ is switchable, but the
phase is helielectric and not ferroelectric), such a distinc-
tion is not useful when discussing material properties (and
classifying phases) by symmetry considerations only.

Inspecting Figure 2 closely, one realizes that this phase
has a macroscopic handedness, although the molecules
(constituents) themselves do not.

That means, that smectic CG has macroscopically a
hand in the bulk with two possibilities, namely left-handed
(α, β) and right-handed (γ, δ) versions, as sketched in Fig-
ure 2. It contains as a natural special case the CB2 phase
discussed above.

While such a behavior is well-known from solids [21],
this is the first time it is discussed for liquid crystal phases,
in particular, for smectic phases with in-plane fluidity. The
combination of these two properties, macroscopic hand-
edness of the phase (in contrast to the chirality of the
molecules involved in chiral smectic phases such as smec-

Fig. 3. This figure shows some of the possibilities that emerge
when two layers of different forms of smectic CG are associated.
Also shown are forms, where the molecules are facing into the
drawing plane (α′, β′, γ′, δ′) instead of out. Stackings like (α,
α) are ferroelectric, while (α, δ′) are antiferroelectric. Novel
are (α, β) stackings that are ferroelectric within the layers
and antiferroelectric perpendicular to them. Vice versa for (α,
γ′). These possibilities are also found in the CB1 phase which
is contained in CG as a special case. More novel behavior is
found for (α, γ) and (α, α′) stackings which are ferroelectric
perpendicular to the layers as well as in one direction within
the layers, but antiferroelectric in the other layer direction.
Vice versa, (α, δ) and (α, β′) are ferroelectric in one direction
in the layers and antiferroelectric in the other layer direction
as well as perpendicular to the layers.

tic C∗ [11]) and in-plane fluidity, makes it plausible that
such a phase will form statistically an equal number of
left and right-handed helices macroscopically. And this is
precisely what has been observed by Sekine et al. [6].

In Figure 3 we show the wide range of possibilities that
emerges when two layers of the different forms of smectic
CG are associated.

We note, that all the other biaxial fluid smectic phases
discussed in this section, namely smectic C, CM , CP , CB1

and CPA do not possess a macroscopic hand. There is
thus no reason to observe any helices, not even an equal
number of left and right-handed helices, in these phases in
compounds composed of achiral molecules. It appears then
that smectic CG and CB2 are the only candidates known
to date that can account for the experimental observations
of Sekine et al. [6].

3 Macroscopic and electric properties of CG

Since smectic CG has in general C1 symmetry, there ex-
ists [20] a polar vector pi = (px, py, pz), whose direc-
tion is not determined by simple symmetry considerations.
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This implies that, in contrast to CP and C∗, the direction
of macroscopic polarization is not fixed in a special sym-
metry direction. For CP it has to be in a specific direction
set by the mirror-plane and by the twofold axis. For one
layer of smectic C∗, the polar direction and thus the di-
rection of the polarization P is also fixed by symmetry
considerations [11].

In the CG phase one can construct 3 independent, non
co-planar vectors, m̂, k̂ × m̂, and n̂ × m̂ and the ac-
tual polarization is a linear combination of those. Now
chirality can also be seen easily, since the triple prod-
uct made of these three polar vectors is a pseudoscalar:
q̃ = m̂ · [(k̂× m̂)× (n̂× m̂)] = m̂ · (k̂× n̂). For m̂ to
−m̂ the chirality changes from, say, right- to left-handed,
which can also be seen from Figure 1.

Because smectic CG possesses a polar vector, it has
rather interesting macroscopic electric and electromechan-
ical properties. For that part of the generalized free energy
we obtain in lowest order

Φ =

∫
dτ [εEijEiEj + PiEi

+Ei(ζ
T
i δT + ζpi δp+ ζci δc) + dijEi∇juz]. (3.1)

The contribution ∼ εEij is the usual dielectric term, which
contains six independent coefficients for triclinic symme-
try. The next term is the one characteristic for all ferro-
electric materials. The terms ∼ ζTi , ζ

p
i and ζci are related

to pyroelectric effects, pressure electric effects and to an
electric response resulting from a concentration change in
mixtures. All three first rank tensors are of the structure
ζαi = ζiαpi and thus contain three independent coefficients
each. The last term in equation (3.1) is related to piezo-
electric effects coupling the electric field to gradients of the
layer displacement u · k̂. Since we have a layered structure
(smectic), which is fluid in the layers, only first order gra-
dients of uz contribute (when ẑ corresponds to the direc-
tion of the layer normal) to lowest order in the gradients.
Thus dij contains six independent coefficients for smectic
CG (assuming ∇×E ≡ 0).

In addition to these linear electric and electromechani-
cal effects, the symmetry of CG also allows for second har-
monic generation. The corresponding contribution ΦSHG
reads

ΦSHG =

∫
dτχ

(2)
ijkEiEjEk (3.2)

where χ
(2)
ijk contributes 10 independent coefficients.

In addition to the static effects discussed so far, one can
set up the macroscopic dynamics of smectic CG, including
dissipative and reversible parts, using the usual procedure.
It turn out, that in particular the dissipative contributions
bring along a host of coefficients due to the low symmetry
of smectic CG.

Here we just focus on one coupling, namely the cou-
pling between flow (velocity gradients) and the macro-
scopic polarization, which can lead to the possibility to
align the in-plane component of the polarization, P, by
a flow in the layer planes or, vice versa, a motion of the
in-plane component of the polarization can lead to a flow

in the planes of the layers. In general this coupling (which
is reversible, since it is associated with vanishing entropy
production) is of the form

σRij = · · ·+ ξijkPk (3.3)

JPk = · · · − ξijk∇ivj . (3.4)

As one can see from equation (3.3), the reversible part of
the stress tensor, σRij , acquires a contribution proportional
to the macroscopic polarization and from equation (3.4) it
follows that the polarization current, JPk , contains a cou-
pling to velocity gradients,∇ivj . In the most general case,
the third rank tensor ξijk has 18 independent components.
Most of the coupling terms will involve either a component
of P out of the planes or an out of plane component of
the velocity. These will lead to rather complicated defor-
mations involving the smectic layers. If both, the velocity
gradients and the polarization are in the planes, however,
an analogue of flow alignment [11] can arise for P and thus
lead, for example, to the coupling

JPx = ξxyx∇yvx. (3.5)

Undoubtedly the best possibility to detect this coupling
and the other in-plane contributions will be the study of
freely suspended smectic films [22,23] in the CG phase.

4 Defects of the in-plane director
in smectic CG

The preferred direction in the planes of the layers in smec-
tic CG is a polar vector ĉ, which distinguishes between
head and tail. Correspondingly there are no defects of
strength S = (2n+ 1)/2 (where n is an integer) in smec-
tic CG, but only defects of integer strength S = n. Thus
the situation for defects of the in-plane director is the
same as for smectic C and smectic CP . This has to be
contrasted with the orthogonal biaxial smectic CM phase,
whose symmetry allows for defects of half integer strength
for the in-plane director.

It also seems important to discuss in this connection
the truly antiferroelectric phase CPA for which the polar-
izations of the two alternating sets of layers exactly cancel
[3,4,24,25]. In this case half integer defects of the in-plane
director should be possible, since there is no overall po-
lar direction – remembering that a double layer has zero
net polarization. Due to its intricate structure, however,
the antiferroelectric phase CPA offers a unique possibility.
Applying an external electric field E the two subsets of
polarization will no longer exactly cancel and there will
be a field-induced net polarization left over. As a conse-
quence we expect in such a situation only defects of inte-
ger strength to be stable. Therefore the prediction is that,
starting with a sample in the smectic CPA phase contain-
ing defects of half integer strength, the application of a
sufficiently strong external electric field should lead to the
combination of these half integer defects to form defects
of integer strength exclusively. Or, as an alternative, they
could just disappear.
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5 Phase transitions involving smectic CG

The key features characterizing the ordering of a smectic
CG phase are its layering and the fact that it is a po-
lar phase, which has a macroscopic polarization P. As it
is well-known from solid state physics, this macroscopic
polarization P can also serve as the order parameter of
certain phase transitions, for example of the paraelectric-
ferroelectric phase transition in many solids. In the fol-
lowing we want to outline, what can be said from general
and simple symmetry arguments about phase transitions
involving a smectic CG phase. Throughout we will confine
ourselves to the mean field approximation thus ignoring
fluctuation effects.

There are phase transitions between a smectic CG
phase and other smectic phases including smectic A, C,
CM and CP (all fluid in the layer planes). For smectic A,
C and CM one starts with a layered phase that shows the
appropriate orientational order, but no polar order, i.e.
there is no macroscopic polarization. Correspondingly the
macroscopic polarization P, where P has in general three
independent components, emerges as a natural candidate
for the order parameter describing the phase transitions
A−CG, C−CG and CM−CG. Assuming that a Ginzburg-
Landau expansion makes sense (that is, assuming that the
phase transition is not strongly first order) the correspond-
ing Ginzburg-Landau energy for the terms containing the
macroscopic polarization Pi is of the following structure

Φ = Φ0 +

∫
dτ [aP2 + cijklPiPjPkPl

+ dijkl(∇iPj)(∇kPl) + eijklPiPj∇kPl]. (5.1)

The starting phase (smectic A, C and CM , respectively)
reflects itself in the different number of coefficients in-
volved in the fourth rank tensors cijkl, dijkl and eijkl,
but not in its overall structure. The term in front of P2

need not be a second rank tensor, which would be the
most general ansatz. As we are dealing with the first phase
transition involving the macroscopic polarization P (not
to be confused with the electric dipole moment of the
molecules), the prefactor of P2 can be chosen to be a
scalar without loss of generality. The direction of P in
the low symmetry phase is determined by the values of
the coefficients contained in cijkl. We also note that the
CM−CG transition is characterized, in addition, by a tilt
angle (similar to the A−C transition) and for the A−CG
transition there is, in addition, a tilt angle as well as biax-
ial nematic order. For example, it turns out that for the
smectic A–smectic CG transition the fourth rank tensor
cijkl contains in the bulk three independent coefficients,
dijkl brings along five and eijkl four. The contribution pro-
portional to eijkl, which only exists for systems with a vec-
tor order parameter (with a true vector), is well-known to
favor incommensurate and modulated phases for certain
combination of parameter values in the Ginzburg-Landau
energy from solid ferroelectrics [26]. As can be seen from
equation (5.1) the Ginzburg-Landau energy does not have
a contribution cubic in P and, thus, all these phase transi-
tions can be of second order offering a new chance to test

in detail the theory of phase transitions on a number of
systems.

For the smectic CG–smectic CP transition the situ-
ation is slightly different. While the overall structure of
Ginzburg-Landau energy is the same as for the other
three phase transitions just discussed, the order param-
eter changes, since smectic CP has already a macroscopic
polarization with a fixed direction of the polarization
P0 = |P0| in the plane of the layers. Correspondingly the
polarization P in equation (5.2) must be replaced for the
smectic CP−CG phase transition by δP = P − P0 with
δP · P0 = 0. Thus the order parameter for this transi-
tion has only two components instead of three. We note
that the order parameter are the components δP of the
macroscopic polarization P, which are perpendicular to
the macroscopic polarization P0 that exists already in the
CP -phase. The new symmetry elements are thus charac-
terized by δP, a macroscopic quantity, which should not
be confused with the electric dipole moment.

The isotropic–smectic CG phase transition is more
complicated. First it is very likely that it is a (rather
strongly) first order transition, where a Ginzburg-Landau
treatment is less significant. Second, at that transition the
layering and the orientational order have to emerge si-
multaneously such that the polar order is created. There-
fore one needs an order parameter that describes the
strength of the smectic layering as well as an order pa-
rameter that gives the biaxial and oblique orientational
order leading together to the polar order. Thus the ap-
propriate Ginzburg-Landau parameters of the quadratic
terms (say a and a′) have to vanish in the vicinity of
(the fictitious second order phase transition) T ∗, other-
wise the system would not make an isotropic–smectic CG
transition, but rather e.g. an isotropic–smectic A transi-
tion. We note that an isotropic–ferroelectric transition has
never been observed in a system that is fluid in all three
spatial dimensions.

Another phase transition of interest would be a bi-
axial nematic–smectic CG transition. This phase transi-
tion bears at first sight some resemblance with the biax-
ial nematic–smectic CM transition found in side-on liquid
crystalline side chain polymers [13] and analyzed in mean
field approximation in reference [15]. It turned out that
this latter phase transition can be of second order and
that it can be thought of as putting books onto a shelf.
As outlined in Section 2, the situation for biaxial nematic–
smectic CG is slightly different, since the smectic layers are
intersecting all unit vectors of the triad characterizing the
biaxial nematic order under an angle that is different from
0 and 90◦. This leads to the polar ordering and we have to
consider the macroscopic polarization P as an additional
order parameter in addition to the complex scalar func-
tion ψ characterizing the smectic layering. Thus the or-
der parameter characterizing the biaxial nematic–smectic
CG transition is rather different from the order parame-
ter used to describe biaxial nematic–CM . Analyzing the
former transition along similar lines as the latter one [15],
we find that the smectic CG–biaxial nematic transition
can also be of second order, since a cubic invariant cannot
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Table 1. The expected defect structures and the electrical hysteresis properties are presented for the six different classes of
smectic C phases composed of achiral molecules. In this table we concentrate on the phases that are either dielectric or ferro-
(ferri-) electric.

class of phase symmetry strength ofdefects electro-optic response L.H. and R.H helices

CM D2h half integer dielectric no

CP C2v integer ferro- or ferrielectric P = (Px, 0, 0) no

C C2h integer dielectric no

CB2 C2 integer ferro- or ferrielectric P = (Px, 0, 0) yes

CB1 C1h integer ferro- or ferrielectric P = (Px, 0, Pz) no

CG C1 integer ferro- or ferrielectric P = (Px, Py, Pz) yes

be constructed for the Landau functional using ψ and P
as order parameters.

6 Differences in the physical properties
of smectic CG versus smectic CP,
CPA, CM, CB1 and C

After characterizing the physical properties of CG, the
question arises how does one distinguish such a phase
from other biaxial fluid smectic phases composed of achi-
ral molecules, namely CP , CPA, CM , CB1, CB2 and C.
In addition, it is important to know how to distinguish
these four classes among each other. And, of course, it
is important to have tools that can be implemented eas-
ily like polarizing microscopy or electro-optic techniques.
In Section 2 we have discussed, that CG comes naturally
with macroscopic handedness in a left-handed and in a
right-handed version, since the structure of the phase is
chiral. This is not the case for CP , CPA, CM , CB1, and
C. Thus, if an equal number of left and right-handed he-
lices is observed in a biaxial fluid smectic phase, the prime
candidates are smectic CG and CB2, since there is no ob-
vious reason for CP , CPA, CM , CB1 and C to show a ten-
dency towards helix formation, when composed of achiral
molecules.

This leaves us with the task to distinguish by simple
means CP , CPA, CM and C. As we have seen in Section 4,
CM and CPA can show defects of half integer strength
for the in-plane director due to their overall symmetry,
whereas smectic C and CP can only reveal defects of in-
teger strength of the in-plane director.

A simple way to discriminate between a classical C
phase and a CP phase is the evaluation of a P–E hystere-
sis loop. While a smectic C phase is dielectric, smectic
CP is ferrielectric or ferroelectric and thus is expected to
show the corresponding hysteresis in the P–E loop, well
known in solid state physics. Using the same technique
also smectic CM and CPA can be distinguished, since
CM is dielectric, while CPA is truly antiferroelectric. The
analysis given in this section up to now is summarized in
Table 1.

We would also like to point out that there exist many
other techniques which are useful to discriminate between
the various classes. One are X-ray investigations in the

wide angle regime of well-oriented samples. The classic C
phase, for example, shows two crescents that are tilted
with respect to the equator asymmetrically. In contrast
smectic CM is an orthogonal phase that shows four lobes
located symmetrically above and below the equator. This
latter type of behavior has clearly been demonstrated by
Watanabe’s group [25,27–29] for main chain liquid crys-
talline polymers as well as for a special class of low molec-
ular weight compounds.

7 Conclusions and perspective

In this manuscript we discussed the macroscopic proper-
ties and the defect structures of smectic CG as well as
the phase transitions involving this most general biaxial
smectic phase with fluidity in the smectic layers, which
has very low symmetry: C1. We note that we have looked
previously [30–32] at cholesteric and chiral smectic struc-
tures, mainly for polymers, that can also have in certain
cases C1 symmetry locally. But due to the chirality of the
molecules the overall symmetry of these liquid crystalline
structures is typically C∞.

Apart from characterizing the macroscopic physical
properties of the CG phase we have made concrete sugges-
tions how to distinguish experimentally CG from CM , CP ,
CPA and C phases by using the defect structures of the
in-plane director, the presence or absence of left and right-
handed helices as well as measurements of the hysteresis
loop. We have summarized the corresponding results to
be expected in Table 1. From these three types of behav-
ior, it emerges that among these five different classes the
polymer mixtures studied by Soto Bustamente et al. [3,4]
fall into class CPA, the banana-shaped molecules analyzed
by Sekine et al. [6] are a very good (and the first) candi-
date for CG or CB2, since they show an equal number of
left and right-handed helices, and the side-on side chain
liquid crystalline polymers studied by Leube and Finkel-
mann [12,13] belong to class CM , as discussed previously
[1,14,15].

There are clearly several open questions and future
challenges. One of them is to find more compounds show-
ing a smectic CG phase. Another important question is
to sort out which ones of the liquid crystalline phases
formed by the various classes of banana-shaped molecules
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[5–10,18] are ferri- or ferro-electric (CP ) and which ones
are truly antiferroelectric and thus of class CPA showing
defects of half integer strength of the in-plane director.

Another interesting question is to what extent can
the various compounds be mixed to optimize proper-
ties of technological interest. For example, for the anti-
helielectric phases [18] it has been possible to reduce the
threshold field for electro-optic effects by more than a fac-
tor of two by doping them with a helielectric C∗ phase
[33]. A recent effective internal field model [34] accounts
quantitatively for the observed changes in the threshold
field and will undoubtedly also be helpful to character-
ize electro-optic properties of mixtures involving banana-
shaped molecules.

A wide open area of research is clearly the problem
to what extent the concepts that have been useful to
achieve interesting electro-optical properties in banana-
shaped low molecular weight materials can be carried over
to side chain as well as to main chain liquid crystalline
polymers and elastomers containing such molecules.
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